Mechanism of inhibition of Mycobacterium tuberculosis antigen 85 by ebselen

نویسندگان

  • Lorenza Favrot
  • Anna E. Grzegorzewicz
  • Daniel H. Lajiness
  • Rachel K. Marvin
  • Julie Boucau
  • Dragan Isailovic
  • Mary Jackson
  • Donald R. Ronning
چکیده

The increasing prevalence of drug-resistant tuberculosis highlights the need for identifying new antitubercular drugs that can treat these infections. The antigen 85 (Ag85) complex has emerged as an intriguing mycobacterial drug target due to its central role in synthesizing major components of the inner and outer leaflets of the mycobacterial outer membrane. Here we identify ebselen (EBS) as a potent inhibitor of the Mycobacterium tuberculosis Ag85 complex. Mass spectrometry data show that EBS binds covalently to a cysteine residue (C209) located near the Ag85C active site. The crystal structure of Ag85C in the presence of EBS shows that C209 modification restructures the active site, thereby disrupting the hydrogen-bonded network within the active site that is essential for enzymatic activity. C209 mutations display marked decreases in enzymatic activity. These data suggest that compounds using this mechanism of action will strongly inhibit the Ag85 complex and minimize the selection of drug resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inactivation of the Mycobacterium tuberculosis antigen 85 complex by covalent, allosteric inhibitors.

The rise of multidrug-resistant and totally drug-resistant tuberculosis and the association with an increasing number of HIV-positive patients developing tuberculosis emphasize the necessity to find new antitubercular targets and drugs. The antigen 85 (Ag85) complex from Mycobacterium tuberculosis plays important roles in the biosynthesis of major components of the mycobacterial cell envelope. ...

متن کامل

Design of peptides interfering with iron-dependent regulator (IdeR) and evaluation of Mycobacterium tuberculosis growth inhibition

Objective(s): Tuberculosis (TB), a disease caused by Mycobacterium tuberculosis (Mtb), stayed a global health thread with high mortality rate. Since TB has a long-term treatment, it leads high risk of drug resistant development, and there is an urgent to find new drugs. The aim of this study was designing new inhibitors for a new drug target, iron dependent regulator, IdeR. Materials and Method...

متن کامل

A study on the immune response induced by a DNA vaccine encoding Mtb32C-HBHA antigen of Mycobacterium tuberculosis

Objective(s): Tuberculosis (TB) has still remained a global health issue. One third of the world's population is infected with tuberculosis and the current BCG vaccine has low efficiency; hence, it is necessary to develop a new vaccine against TB. The aim of the current study was to evaluate the efficiency of a novel DNA vaccine encoding Mtb32C-HBHA antigen in inducing specific immune responses...

متن کامل

Development of 1,2,4-triazole-5-thione derivatives as potential inhibitors of enoyl acyl carrier protein reductase (InhA) in tuberculosis.

Tuberculosis (TB) ranks second, next to AIDS making it most formidable disease if the present age. One of the crucial enzymes involved in cell wall synthesis of Mycobacterium tuberculosis, InhA (enoyl acyl carrier protein reductase) has been authenticated as an effective target for anti-mycobacterial drug development. In the current work, we have developed novel derivatives of 1,2,4-triazole-5-...

متن کامل

Inhibition of isoniazid-induced expression of Mycobacterium tuberculosis antigen 85 in sputum: potential surrogate marker in tuberculosis chemotherapy trials.

Mycobacterium tuberculosis antigen 85 is induced in vitro by isoniazid (INH); its sustained induction in sputum during tuberculosis (TB) therapy predicts relapse. In this trial, rifampin or rifalazil inhibited the induction of sputum antigen 85 by INH in a dose-dependent fashion. This approach may facilitate the evaluation of new TB drugs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013